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A B S T R A C T

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders presenting irreversible
progression of cognitive impairment. How to identify AD as early as possible is critical for intervention
with potential preventive measures. Among various neuroimaging modalities used to diagnose AD, functional
positron emission tomography (PET) has higher sensitivity than structural magnetic resonance imaging (MRI),
but it is also costlier and often not available in many hospitals. How to leverage massive unpaired unlabeled
PET to improve the diagnosis performance of AD from MRI becomes rather important. To address this
challenge, this paper proposes a novel joint learning framework of unsupervised cross-modal synthesis and
AD diagnosis by mining underlying shared modality information, improving the AD diagnosis from MRI while
synthesizing more discriminative PET images. We mine underlying shared modality information in two aspects:
diversifying modality information through the cross-modal synthesis network and locating critical diagnosis-
related patterns through the AD diagnosis network. First, to diversify the modality information, we propose
a novel unsupervised cross-modal synthesis network, which implements the inter-conversion between 3D PET
and MRI in a single model modulated by the AdaIN module. Second, to locate shared critical diagnosis-related
patterns, we propose an interpretable diagnosis network based on fully 2D convolutions, which takes either
3D synthesized PET or original MRI as input. Extensive experimental results on the ADNI dataset show that
our framework can synthesize more realistic images, outperform the state-of-the-art AD diagnosis methods,
and have better generalization on external AIBL and NACC datasets.
1. Introduction

Alzheimer’s disease (AD) is one of the most common neurode-
generative disorders presenting irreversible progression of cognitive
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impairment, for which there is currently no cure and limited treat-
ment (Winblad et al., 2016; Wang et al., 2022). Therefore, distinguish-
ing AD from normal cognition (NC) as early as possible is critical for
intervention with potential preventive measures, which can also reduce
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Fig. 1. The conceptual illustration of the proposed joint learning framework. The
proposed framework jointly learns unsupervised cross-modal synthesis and diagnosis
tasks by mining shared modality information, and uses either modality for diagnosis.

the high healthcare costs and heavy personal burdens associated with
the treatment and care of AD patients (Wong, 2020).

Among various neuroimaging modalities used to diagnose AD, func-
tional positron emission tomography (PET) has higher sensitivity than
structural magnetic resonance imaging (MRI) (Pichler et al., 2010).
However, PET is also costlier than MRI and often not available in many
hospitals due to the high cost associated with multiple examinations,
poorly equipped hospitals, and difficulties in data collection (Pan et al.,
2020). How to leverage the more sensitive but less available PET
to improve the diagnosis performance from the MRI becomes rather
important. To address this challenge, traditional methods perform in-
terpolation for the missing modality in radiomics analysis (Campos
et al., 2015; Gillies et al., 2016), but they typically perform not well
due to inaccurate interpolation (Pan et al., 2020).

The broad success of deep generative models (Zhu et al., 2017; Ho
et al., 2020) has prompted the development of cross-modal medical
image synthesis (Yi et al., 2019; Zhao and Zhao, 2021) that can directly
synthesize the missing modality from available one for downstream
tasks (Shin et al., 2020; Liu et al., 2020; Yang et al., 2020; Pan et al.,
2021; Rahimpour et al., 2021; Zhang et al., 2022). However, most
cross-modal synthesis tasks highly rely on supervised paired data (Dar
et al., 2019; Sun et al., 2019; Hu et al., 2021; Liu et al., 2022; Luo
et al., 2022). Collecting large-scale paired data for training, how-
ever, is time-consuming and cumbersome in practical clinical scenarios.
Consequently, the synthesis network trained with limited supervised
paired data may suffer from potential overfitting. To be more practical,
cross-modal synthesis tasks should focus more on massive unpaired
data rather than limited paired data (Yang et al., 2021b,a). On the
other hand, although they can be used for downstream tasks, cross-
modal synthesized images have little diagnosis information for AD,
even with supervised paired data. Although looking realistic, the cross-
modal synthesis task is independent of the diagnosis task. This situation
worsens when the synthesis task is trained with unpaired data, where
the diagnosis information is difficult to be learned.

In this work, we explore how to leverage massive unpaired unla-
beled PET data to improve AD diagnosis from MRI while synthesizing
more discriminative PET images. To this end, we propose a novel
joint learning framework of unsupervised cross-modal synthesis and
diagnosis for AD by mining underlying shared modality information.
Fig. 1 presents the concept of the proposed joint learning framework,
in which the first step is to synthesize pseudo-paired PET modality
images through the unsupervised cross-modal synthesis network to
diversify the modality information, and the second is to use either
synthesized PET or real MRI as the input to the same diagnosis network
to mine the shared information between them. The rationale behind
the proposed workflow is that our framework considers the synthesized
2

PET images to be task-specific data augmentation of the input MRI
images, which can assist the downstream diagnosis network in filtering
out diagnostically irrelevant features and mining underlying shared
modality information. In addition, we jointly train the cross-modal
synthesis and AD diagnosis networks to supervise each other, providing
more discriminative diagnosis information in the synthesized images
and improving the performance of AD diagnosis.

The contributions of this work are summarized as follows.

(1) We propose a novel joint learning framework of unsupervised
cross-modal synthesis and diagnosis for AD by mining under-
lying shared modality information, improving the performance
of both tasks. To the best of our knowledge, this is the first
study to utilize the unsupervised cross-modal synthesis method
to synthesize PET for AD diagnosis.

(2) To diversify the modality information, we propose a novel un-
supervised cross-modal synthesis network that implements the
inter-conversion between 3D PET and MRI in a single model
modulated by the AdaIN module.

(3) To locate shared critical diagnosis-related patterns, we propose
an interpretable diagnosis network based on fully 2D convo-
lutions, which takes either 3D synthesized PET or real MRI
as input. The regions of interest located by our network are
consistent with those associated with AD.

(4) We extensively evaluate our framework on the ADNI dataset,
demonstrating that our framework can synthesize more realistic
images, outperform the state-of-the-art AD diagnosis networks,
and have better generalization on external AIBL and NACC
datasets.

The remainder of this paper is organized as follows. In Section 2,
we detail the proposed framework along with the novel synthesis and
diagnosis networks. We elaborate on the setup of the experiments and
the experimental results in Section 3. Finally, Section 4 presents the
discussion of our framework, followed by a concluding summary in
Section 5.

2. Methodology

Fig. 2 presents the detailed training and inference phases of the
proposed joint learning framework for AD diagnosis, which involves
unsupervised cross-modal synthesis and AD diagnosis tasks. We first
overview the overall framework in Section 2.1 and then describe the
two novel networks for cross-modal synthesis and AD diagnosis in
Sections 2.2 and 2.3, respectively. Finally, we present the objective
function for optimizing the proposed framework in Section 2.4.

2.1. Overall framework

As shown in Fig. 2, the proposed framework is a joint learning
framework of unsupervised cross-modal synthesis and diagnosis for AD,
which can leverage massive unpaired unlabeled PET data to improve
AD diagnosis from MRI by mining underlying shared modality infor-
mation. We believe that the core of cross-modal synthesis for diagnosis
is to mine the underlying shared information between different modal-
ities. To this end, we mine the underlying shared modality information
in two aspects: diversifying modality information through the cross-
modal synthesis network and locating shared critical diagnosis-related
patterns through the AD diagnosis network.

During the training phase, our framework requires a set of unpaired
3D MRI and PET images, within which the MRI images are labeled with
AD or NC, while the PET images are unlabeled. To diversify modality
information, we feed unpaired 3D MRI and PET images into the cross-
modal synthesis network to synthesize pseudo-paired PET images. In
our cross-modal synthesis network, termed ShareGAN, we employ a
single shared synthesis model modulated by the AdaIN module to
accomplish the bidirectional mapping between two modalities. At the
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Fig. 2. Illustration of the training and inference phases of the proposed joint learning framework.
same time, inspired by Generative adversarial networks (GAN) (Zhu
et al., 2017), two different discriminators are also used to discriminate
the authenticity of the synthesized MRI and PET images. After the cross-
modal synthesis process, our framework considers the synthesized PET
images as the task-specific data augmentation for the corresponding
MRI images. To locate shared critical diagnosis-related patterns, we
feed either synthesized PET images or original MRI images into the
same diagnosis network using MRI image labels.

We note that the proposed framework does not involve the cross-
modal synthesis network during the inference phase; that is, our net-
work has the same inference speed as conventional AD diagnosis net-
work, and is memory-friendly and computationally efficient.

2.2. Cross-modal synthesis network

The proposed unsupervised cross-modal synthesis network, Share-
GAN, implements the inter-conversion between 3D PET and MRI in
a single model modulated by the AdaIN module. This design aims to
ensure that the synthesized images preserve underlying structures well
and achieve better image quality. At the same time, two different
modality discriminators, 𝐷m and 𝐷p, are used for MRI and PET, respec-
tively, which aim to distinguish real modality from the synthesized one;
see Supp. A.1 for detailed network architecture.

Fig. 3 illustrates our synthesis model and the AdaIN module. Our
synthesis model is built upon the 3D UNet (Ronneberger et al., 2015).
Differently, we introduce a fully convolution-implemented self-attention
block (Dosovitskiy et al., 2020; Pan et al., 2022) at the bottleneck of
the synthesis model to learn the global information of the input 3D
images (see Supp. A.2 for details). In the following, we elaborate on
how the AdaIN module modulates the synthesis model to achieve the
inter-conversion between the two modalities.

Suppose that a multi-channel feature tensor 𝑼 at a specific layer is
represented as follows:

𝑼 = [𝒖 ,… , 𝒖 ] ∈ R𝐷×𝐻×𝑊 ×𝐶 , (1)
3

1 𝐶
where 𝒖𝑖 represents the feature of size 𝐷 ×𝐻 ×𝑊 at the 𝑖-th channel.
Furthermore, the corresponding feature map 𝑽 for the transformed
modality image is given by:

𝑽 = [𝒗1,… , 𝒗𝐶 ] ∈ R𝐷×𝐻×𝑊 ×𝐶 . (2)

Then, instance normalization (Ulyanov et al., 2016) and Adaptive
Instance Normalization (AdaIN) (Huang and Belongie, 2017) convert
the feature per channel using the following transform:

 (𝒖𝑖, 𝒗𝑖) = 𝜇(𝒗𝑖) + 𝜎(𝒗𝑖)
(

𝒖𝑖 − 𝜇(𝒖𝑖)
𝜎(𝒖𝑖)

)

, 𝑖 = 1,… , 𝐶, (3)

where 𝜇(𝒖𝑖) and 𝜎(𝒖𝑖) represent the mean and standard deviation of
the input modality feature 𝒖𝑖. In Eq. (3), we scale the normalized input
modality feature per channel with 𝜎(𝒗𝑖) and shift it with 𝜇(𝒗𝑖). In terms
of instance normalization, 𝜇(𝒗𝑖) and 𝜎(𝒗𝑖) equal to 0 and 1, respectively.
However, in the AdaIN module, 𝜇(𝒗𝑖) and 𝜎(𝒗𝑖) are estimated using the
transformed modality images.

As mentioned above, the proposed unsupervised cross-modal net-
work uses the synthesis model to synthesize pseudo-paired PET images
from MRI images ( → ), and here uses the AdaIN module to
modulate the conversion direction of the synthesis model ( → ). In
other words, for each of the two modalities, PET  or MRI , another
one serves as the transformed modality. The AdaIN module modulates
the inter-conversion between them as follows:

(𝜇(𝑽 ), 𝜎(𝑽 )) =

{

(0, 1),  → 
(𝝁𝑀 ,𝝈𝑀 ),  → .

(4)

Therefore, AdaIN module is defined as follows:

AdaIN(𝛽) ∶=
[

𝜇(𝛽)
𝜎(𝛽)

]

= (1 − 𝛽)
[

0
1

]

+ 𝛽
[

𝜇𝑀
𝜎𝑀

]

, (5)

where (𝜇𝑀 , 𝜎𝑀 ) are learnable parameters during the training, and 𝛽 ∈
{0, 1}, where 𝛽 = 0 corresponds to  →  while 𝛽 = 1 corresponds to
 → .

Given the modality (MRI) M and the unpaired modality (PET) P,
the AdaIN module acts as a ‘‘switch’’ in the single synthesis model to
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Fig. 3. Illustration of our unsupervised cross-modal synthesis ShareGAN network including synthesis model and AdaIN module.
determine whether specific modality information is introduced or not.
Here, we denote the model involved in synthesized PET images as 𝐺p
and the model involved in synthesized MRI images as 𝐺m. During the
training phase, we only need to specify the conversion direction of the
synthesis model 𝐺 via the AdaIN module as follows:

𝐺p(M) ∶= 𝐺(M; AdaIN(0)), (6)

𝐺m(P) ∶= 𝐺(P; AdaIN(1)). (7)

In the concrete implementation, the AdaIN module takes a vector of
size 1 × 1024 as input and outputs seven pairs of mean 𝝁 and standard
deviation 𝝈 vectors for all feature maps in the AdaIN branch blocks
of our synthesis model, as shown in Fig. 3. Compared to the AdaIN
module of Switchable CycleGAN (Yang et al., 2021a), we enhance its
local learning capability by introducing an independent fully-connected
layer, activated by the leaky ReLU function, at the start of each AdaIN
branch block.

2.3. AD diagnosis network

3D medical imaging data can be viewed as a series of 2D slice
images. During clinical examination, radiologists also tend to examine
various 2D slice images. Inspired by this, we propose an efficient
and interpretable AD diagnosis network implemented with fully 2D
convolution and joint inter- and intra-slice modeling using a zero-
parameter slice-shift module. In addition, it is also interpretable with
the slice-aware module, as shown in Fig. 4.

We start by dividing 3D medical image data along a specific axis to
obtain a series of 2D slice images (axial, coronal, or sagittal planes).
We use a shared base feature extractor to extract the feature maps
from each slice. Then, we use the slice-aware module to derive the
distribution of slice attention scores and thus enhance the important
slice information accordingly. At following different feature map scales,
we design respective slice-shift modules to exchange feature informa-
tion among neighboring slices, thus enabling joint inter- and intra-slice
modeling. Moreover, each slice feature predicts the corresponding label
via a fully-connected layer shared across all the slices. Finally, the
overall result is obtained by averaging all predicted results.

Since our diagnosis network is built with shared weights’ 2D back-
bone model, it can be trained and tested efficiently compared to other
3D models, preventing potential overfitting. Meanwhile, our diagnosis
network can be designed based on any 2D backbone. In our exper-
iments, taking 2D ResNet18 as an example, ResNet18 consists of a
4

down-sampling layer, four residual blocks, and a fully-connected layer.
We can use the down-sampling layer, the first two residual blocks, as
the base feature extractor. In order to uncover more information from
adjacent slices, we use the slice-shift module before each of the last two
residual blocks. The final fully-connected layer gives the corresponding
predictions. Next, we detail the proposed slice-aware and slice-shift
modules.

2.3.1. Slice-aware module
The slice-aware module is designed to interpret significant slices

and regions in our diagnosis network. First, we feed the 3D images
into a base feature extractor shared across all the slices, generating
independent features for each slice. The resulting features have a size
of 𝐵 × 𝑆 × 𝐶 × 𝐻 × 𝑊 , where 𝐵, 𝑆, 𝐶, 𝐻 , and 𝑊 represent the
size of mini-batch, the number of slices, the number of channels, the
height, and the width of the features, respectively. In the next step,
as illustrated in Fig. 5, we employ a 1 × 1 convolution layer with
shared weights to fuse the whole information per slice into one channel.
Then, one branch employs a 1 × 1 convolution layer to fuse all slices’
information as the ‘‘global query’’. Another branch adopts a lighting
depthwise convolution (Howard et al., 2017) to add different slices’
local learning capability as the ‘‘local keys’’, where each slice has
an individual convolution kernel. We then use a softmax function to
translate the scaled dot product of ‘‘global query’’ and ‘‘local keys’’ into
a relative measurement of slice attention as follows:

Sof tmax(𝑸𝑲⊤ × 𝛼), (8)

where 𝑸 ∈ R𝐵×1×𝐻×𝑊 and 𝑲 ∈ R𝐵×𝑆×𝐻×𝑊 denote the normalized
‘‘global query’’ and ‘‘local keys’’, respectively. Moreover, a variable 𝛼
is used to adjust the sharpness of slice attention distribution.

Furthermore, we expand the slice attention scores to the original
input size and multiply it by the original input, enhancing the impor-
tant slice information (Hu et al., 2018). Note that the slice attention
distribution can reveal which slices are more important, and the ‘‘local
keys’’ part can also reveal which parts of the slices are more critical.

2.3.2. Slice-shift module
As previously described, a 2D backbone model with shared weights

extracts independent features from different slices. However, the fea-
tures from 2D images divided along a specific direction cannot provide
slice-to-slice 3D stereo-spatial information. Therefore, we propose a
slice-shift module shown in Fig. 6(b), which allows for joint inter- and
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Fig. 4. The proposed AD diagnosis network with slice-aware module and slice-shift module.
Fig. 5. Illustration of the proposed slice-aware module.

Fig. 6. Illustration of (a) the original feature map without shifting and (b) the changed
feature map by the proposed slice-shift module.

intra-slice modeling. Unlike the original feature map without shifting
in Fig. 6(a), to exchange information with neighboring slices, the slice-
shift module shifts some channels forward and backward along the
slice-dividing direction by ±1, truncates the surplus features, and pads
the missing features with 0. The information from neighboring slices is
mingled with the current slice by applying the slice-shift module. Note
that the introduction of this module causes no additional computational
burden on the network, allowing it to train and infer efficiently (Lin
et al., 2019).

2.4. Objective function

In the following, we demonstrate the objective function of the
proposed framework. During the training phase, we random sample
unpaired 3D MRI 𝒙𝑚 ∈ M (𝑚 = 1, 2,…) and PET 𝒙𝑝 ∈ P (𝑝 = 1, 2,…)
data for input. The ultimate goal of the cross-modal synthesis network
is to learn a mapping M → P. After completing the synthesis process,
we feed either the synthesized PET image 𝒙∗ or real MRI image 𝒙 into
5

𝑝 𝑚
the same diagnosis network for joint training, improving the perfor-
mance of both tasks. The objective function consists of four different
losses, including adversarial loss, cycle-consistency loss, identity loss,
and diagnosis loss.

Two modality discriminators, 𝐷m and 𝐷p, use adversarial loss in the
form of LSGAN loss (Mao et al., 2017) to distinguish the authenticity
of synthesized and real images, defined as follows:

GAN=−
(

E𝒙𝑝∈P
[(𝐷p(𝒙𝑝)−1)2]+E𝒙𝑚∈M

[𝐷p(𝐺p(𝒙𝑚))2]+

E𝒙𝑚∈M
[(𝐷m(𝒙𝑚)−1)2]+E𝒙𝑝∈P

[𝐷m(𝐺m(𝒙𝑝))2]
)

. (9)

Cycle-consistency loss constrains the conversion between original
and transformed modalities, which is implemented by 𝐿1 loss as fol-
lows:

Cycle =E𝒙𝑝∈P
‖𝐺p(𝐺m(𝒙𝑝)) − 𝒙𝑝‖1+

E𝒙𝑚∈M
‖𝐺m(𝐺p(𝒙𝑚)) − 𝒙𝑚‖1. (10)

Identity loss forces the synthesis model (e.g. 𝐺p) to achieve an
identity mapping from the input (e.g. 𝒙𝑝 ∈ P) to the output, such that
𝐺p(𝒙𝑝) ⋍ 𝒙𝑝, which is defined as follows:

Ide = E𝒙𝑝∈P
‖𝐺p(𝒙𝑝) − 𝒙𝑝‖1 + E𝒙𝑚∈M

‖𝐺m(𝒙𝑚) − 𝒙𝑚‖1. (11)

In this study, diagnosis loss is to distinguish between subjects with
AD and NC, which is the cross-entropy loss defined as follows:

Cls = −E(𝑦m ,𝑦∗m)𝑦m log(𝑦∗m), (12)

where 𝑦m, 𝑦∗m are the ground-truth labels and the labels predicted by
our AD diagnosis network, respectively.

Ultimately, the overall objective function as follows:

 = GAN + 𝜆CycleCycle + 𝜆IdeIde + 𝜆ClsCls, (13)

where 𝜆Cycle, 𝜆Ide, and 𝜆Cls are hyperparameters that adjust the weights
between these four objective functions, and set to 10, 3, and 1, re-
spectively, according to the experimental results of hyperparameter
selection on the validation set (see Supp. C.1 for details).

3. Experiment results

In this section, we first elaborate on the setup of the experiments
in Section 3.1. Then, we present evaluation results on the cross-modal
synthesis and AD diagnosis tasks in Sections 3.2 and 3.3, respec-
tively. Finally, the overall joint learning framework results against
other state-of-the-art Alzheimer’s diagnosis methods are presented in
Section 3.4.
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Table 1
Demographic information of the datasets used in the experiment.

Modality Source♯ Type Subject Gender ∗ Age ∗ MMSE † APOE4 †

no. Male (%) Mean (std) Mean (std) Positive (%)

MRI

ADNI NC 317 148 (46.69) 75.604 (6.231) 28.588 (2.573) 85 (26.81)
AD 247 129 (52.23) 74.847 (7.934) 22.495 (3.321) 157 (63.56)

AIBL NC 105 47 (44.76) 70.514 (6.075) 28.790 (1.174) 5 (4.76)
AD 28 11 (37.93) 74.233 (7.684) 20.433 (4.599) 21 (75.00)

NACC NC 43 18 (41.86) 72.353 (8.438) 29.137 (1.167) 1 (2.32)
AD 49 21 (42.86) 71.314 (9.092) 21.824 (5.384) 9 (18.37)

PET ADNI NC 316 163 (51.58) 75.961 (6.394) 28.967 (1.449) 84 (26.58)
AD 233 136 (58.37) 75.386 (7.898) 22.149 (3.715) 154 (66.09)

♯ In the ADNI, AIBL, and NACC study cohort, Mini-Mental State Examination (MMSE) and Apolipoprotein E4 (APOE4) allele genetic information
are unavailable for some subjects. All the scans considered for this study are performed on individuals within ±6 months from the date of
clinical diagnosis.
∗ No significant differences are found between the different subject groups of the corresponding modality for gender and age (𝑝 > 0.05).
† Significant differences are found between the different subject groups of the corresponding modality for MMSE and APOE4 (𝑝 < 0.05), where
the chi-square test is used for gender and APOE4, while age and MMSE are all tested using t-tests.
Table 2
Quantitative results of synthesized images across different subjects by different cross-modal synthesis networks on the ADNI testing set. The
best and second best quantitative results in different supervised types are highlighted in bold and underlined fonts, respectively.

Type Methods MAE (%) ↓ PSNR (dB) ↑ SSIM ↑

Supervised Pix2Pix 1.589 ± 0.133 42.551 ± 0.328 0.936 ± 0.003
Pix2Pix (after joint learning) 1.581 ± 0.101 42.884 ± 0.275 0.937 ± 0.001

Unsupervised

CycleGAN 2.947 ± 0.231 37.563 ± 0.454 0.896 ± 0.007
CycleAttGAN 2.603 ± 0.187 38.158 ± 0.358 0.904 ± 0.006
ShareGAN (ours) 2.329 ± 0.132 38.078 ± 0.301 0.908 ± 0.003
ShareGAN (ours after joint learning) 2.144 ± 0.117 38.373 ± 0.281 0.916 ± 0.003
i
i
w
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u
a
t

3.1. Experiment setup

3.1.1. Dataset and preprocessing
The data used in this experiment are obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), Australian Imaging, Biomark-
ers and Lifestyle (AIBL), and National Alzheimer’s Coordinating Center
(NACC) cohorts. Resources and data in ADNI are from North America.
ADNI researchers collect, validate, and utilize data, including MRI and
PET images, genetics, cognitive tests, CSF, and blood biomarkers, as
predictors of AD (Petersen et al., 2010). AIBL is a long-term longitudi-
nal investigation aiming to advance understanding of the causes of AD,
collected in Australia (Ellis et al., 2009). Over the past two decades,
NACC has been built in collaboration with more than 42 Alzheimer’s
Disease Research Centers (ADRCs) throughout the US (Beekly et al.,
2004). All study participation protocols are reviewed by each subject’s
local review committee and signed with the subject’s consent (Petersen
et al., 2010). The subjects’ demographic information in each dataset is
summarized in Table 1.

In our experiment, only one MRI image from the baseline visit was
selected for each subject. The ADNI dataset is randomly split according
to the ratio of 6:2:2, where 60% is used for model training, 20% of
the data is used for internal validation, and the rest is used for internal
testing. We select the best-performing model on the validation set for
making predictions on the internal ADNI testing data and the external
AIBL and NACC testing data. The ADNI dataset used in our experiments
has 564 T1 MRI images and 549 FDG PET images. We highlight
that the data in the training set is unpaired for the ADNI dataset.
However, the MRI and PET data in the ADNI validation and testing
sets are paired for better quantitative comparison. The criterion for
selection included individuals aged ⩾ 55 years, within ±6 months from
the clinically confirmed diagnosis. We excluded cases including AD
with mixed dementia, non-Alzheimer’s disease dementias, and incident
major systemic illnesses (Qiu et al., 2020).

For each modality, MRI and PET, we use different standard pre-
processing pipelines to preprocess them, with details given in Supp. B.
The data are preprocessed and aligned to the MNI152 template space
using Freesurfer (Fischl, 2012), ANTs (Avants et al., 2009), and FSL
6

software. In order to ensure the quality of the synthesized images, (
we do not change the image size, resulting in the final image size of
256 × 256 × 256.

3.1.2. Implementation details
We implement all the methods in this paper in the PyTorch li-

brary (Paszke et al., 2019) and train them on NVIDIA V100 32G Tensor
Core GPUs. All the networks are initialized by the kaiming method (He
et al., 2015) and trained using the Adam optimization algorithm with
𝛽1 = 0.5 and 𝛽2 = 0.999. We use the early stopping method to select
better network weights during the training phase. For a fair and reliable
performance evaluation (Song and Chai, 2018; Qian et al., 2021), we
repeat the experiments with different random seeds three times and
report their mean results in this paper. The overall framework training
process is divided into three stages, and the concrete training stages are
described below.

In the first stage, we pre-train the cross-modal synthesis network
by randomly cropping the original 3D medical images to the size of
128 × 128 × 128. A learning rate of 2 × 10−4 is used first to train
15 epochs, followed by an exponential learning rate with a decay
rate of 0.95. Secondly, the whole 3D brain image with the size of
256 × 256 × 256 is input into the cross-modal synthesis network
obtained in the previous stage and the diagnosis network to get a
better version of both network weights. An exponential learning rate of
1×10−4 with a decay rate of 0.95 is used in this stage for the cross-modal
synthesis and diagnosis networks. In the last stage, we perform end-to-
end joint learning to fine-tune all the parameters. To ensure the stability
of the synthesis quality and the capacity of the diagnosis network,
the learning rate of the diagnosis network is set to 1 × 10−5, which
s ten times that of the cross-modal synthesis network at this stage,
.e. 1 × 10−6. Source code is available at https://github.com/thibault-
ch/Joint-Learning-for-Alzheimer-disease.

.1.3. Evaluation metrics
For the cross-modal synthesis task, three evaluation metrics are

sed to measure the quality of synthesized images, including the mean
bsolute error (MAE) (Willmott and Matsuura, 2005), the peak signal-
o-noise ratio (PSNR), and the structural similarity index measure

SSIM) (Hore and Ziou, 2010). For the diagnosis task, five metrics

https://github.com/thibault-wch/Joint-Learning-for-Alzheimer-disease
https://github.com/thibault-wch/Joint-Learning-for-Alzheimer-disease
https://github.com/thibault-wch/Joint-Learning-for-Alzheimer-disease
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Fig. 7. Qualitative results of different cross-modal synthesis networks.
Fig. 8. The SUVR error map (𝒙𝑝 − 𝒙∗
𝑝) results between the real PET images 𝒙𝑝 and synthesized PET images 𝒙∗

𝑝 .
are used for performance evaluation, including accuracy (ACC), the
area under the receiver operating characteristic curve (AUC), F1-Score
(F1S), specificity (SPE), and sensitivity (SEN).

3.2. Evaluation on cross-modal synthesis task

For the unsupervised cross-modal synthesis task, we compare the
proposed cross-modal synthesis network (before and after joint learn-
ing), ShareGAN, to the competitive baselines such as 3D UNet-based
(Ronneberger et al., 2015) Cycle-Consistent Generative Adversarial
Networks (CycleGAN) (Zhu et al., 2017) and CycleAttGAN networks.
CycleAttGAN only introduces a self-attention block at the bottleneck of
the 3D UNet synthesis model. Moreover, we also compare our network
with the supervised Pix2Pix (Isola et al., 2017) network (the synthesis
model is the same as CycleAttGAN). For all comparison methods, the
discriminators have the same structure.
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Table 3
Comparison of model size in synthesis models.

CycleAttGAN ShareGAN (ours)

Network Parameters Network Parameters

𝐺m 27.637M 𝐺 27.637M
𝐺p 27.637M AdaIN 5.318M
Total 55.274M Total 32.955M

Quantitative comparison Table 2 presents the quantitative results
across different subjects on the ADNI testing set of all compared meth-
ods. For the unsupervised cross-modal synthesis, our ShareGAN outper-
forms others in all quantitative metrics after joint learning. Meanwhile,
Table 3 compares the number of parameters in the synthesis model
between CycleAttGAN and our network. Note that the synthesis model
structure of CycleAttGAN is the same as that of our network. However,
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Fig. 9. Interpretable results of diagnosis network. (a) 3D visualization of the region of interest. (b) Slice attention distribution of the different slice-dividing directions. (c) Grad-CAM
visualization of the slice-aware module’s ‘‘local keys’’ part in randomly selected brains from different datasets.
-

CycleAttGAN uses two synthesis models, and we only need one plus
some additional parameters from AdaIN. Although the number of pa-
rameters needed for synthesis models has been reduced by half, the
performance of the network has been improved thanks to more stable
training.

Table 2 shows a large gap in synthesized image quality between
unsupervised and supervised training. Nonetheless, both show perfor-
mance improvement after joint learning with the downstream diagnosis
tasks. As for the Pix2pix network after joint learning, the improvement
in quantitative performance metrics is not as large as our unsuper-
vised network, possibly due to the relatively high degree of pixel-level
supervision in the original supervised task.

Qualitative comparison Fig. 7 presents the qualitative results of all
the methods. In addition, we select the pons (Thibeau-Sutre et al.,
2022) as the reference region and present the Standardized Uptake
Value Ratio (SUVR) (Thie, 2004) error map to validate the quality of
synthesized images in Fig. 8. The PET images synthesized by CycleGAN
contain many artifacts that do not exist in the original PET images
and lose some of the original structural information. The CycleAttGAN
network augments the CycleGAN with a self-attention module, resulting
in a smoother image with global information. The synthesized images
of the proposed ShareGAN have a more coherent and realistic pattern
than the previous images but have poor local detail synthesis. However,
after joint learning, our ShareGAN extracts more discriminative diag-
nosis information from the input MRI image based on the downstream
diagnosis task, and the quality of the synthesized images is greatly
improved; see Supp. C.2 for more qualitative results.

From the qualitative results, it is evident that there are substantial
differences between PET images synthesized by unsupervised and su-
pervised training. However, even with the supervised Pix2Pix network,
we can see that there is still a large gap between the synthesized and
real images. In other words, some information about the molecular
functionality of PET modality cannot be derived from structural MRI
modality. In cross-modal image synthesis, we should focus on more
than the authenticity of synthesized images; that is, the synthesis task
can be more meaningful to make the synthesized image have more
discriminative information related to the downstream diagnosis task,
as described in the following.
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Table 4
Ablation studies of the diagnosis network on the ADNI testing set. The best quantitative
results are highlighted in bold font.

Slice aware Slice shift Shift folds ACC AUC F1S SPE SEN

✗ ✗ – 0.817 0.874 0.811 0.831 0.810
" ✗ – 0.833 0.890 0.827 0.864 0.837
✗ " 16 0.839 0.913 0.836 0.865 0.837
✗ " 8 0.858 0.921 0.854 0.871 0.853
✗ " 4 0.837 0.909 0.833 0.870 0.831
" " 8 0.867 0.924 0.864 0.873 0.865

3.3. Evaluation on AD diagnosis task

This subsection concentrates on our diagnosis network’s quantita-
tive and interpretable visualization results. Moreover, all the experi-
mental results in this subsection are obtained on the ADNI testing set
without the joint learning. Unless noted otherwise, axial planes are used
in our experiment design because they are the most commonly used in
clinical applications.

Ablation study We start by conducting ablation experiments to demon
strate the effectiveness of the slice-aware and slice-shift modules in
Table 4. In the slice-shift module, we divide the channels’ number of the
corresponding feature map’s layer into 16, 8, and 4 folds, respectively.
Then, we shift one fold unit forward and one fold unit backward along
the slice-dividing direction to learn the information between adjacent
slices; the other folds retain the information from the original slices.

We have the following observations. (1) Both modules can improve
diagnosis performance independently. (2) Dividing the total number of
channels in the feature map into 16 and 4 is too little or too much
exchanged information between neighborhood slices, respectively. In
contrast, the number of channels divided is eight is better than oth-
ers. (3) When using the slice-aware and slice-shift modules together,
performance can be further improved.

Interpretability As illustrated in Fig. 9, the slice-aware module of-
fers the unique interpretability of our diagnosis network. We train
the diagnosis network separately in three planes: axial, sagittal, and
coronal. The slice attention distribution of the different slice-dividing
directions is shown in Fig. 9(b). Meanwhile, we select the most critical
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Fig. 10. Grad-CAM interpretable results for three different slice-dividing directions of one brain randomly selected from the ADNI testing set; RID: 011_S_4845 (AD). (a) Axial
planes, (b) Sagittal planes, and (c) Coronal planes.
Table 5
Diagnosis results of different slice-dividing directions on the ADNI testing set. The best
quantitative results are highlighted in bold font.

Slice-dividing
directions

ACC AUC F1S SPE SEN

Sagittal planes 0.850 0.917 0.845 0.880 0.843
Axial planes 0.867 0.924 0.864 0.873 0.865
Coronal planes 0.872 0.927 0.868 0.919 0.864

Table 6
Diagnosis results of different backbones on the ADNI testing set. The best quantitative
results are highlighted in bold font.

Backbones Param. ACC AUC F1S SPE SEN

ResNet18 11.24M 0.867 0.924 0.864 0.873 0.865
ResNet34 21.35M 0.872 0.928 0.869 0.891 0.869

30 slices from three different directions and plot them in Fig. 9(a)
with 3D visualization. We find that the crossover region of interest
drawn in three directions roughly coincided with the location of the
hippocampus, whose changes have been validated to link with the
worsening of AD. In Fig. 9(c), we also employ gradient-weighted class
activation mapping (Grad-CAM) (Selvaraju et al., 2017) to visualize
the slice-aware module’s ‘‘local keys’’ part in randomly selected brains
from different datasets. We observe that our diagnosis network locates
in different regions based on individual differences. However, the
common located regions are consistent with the crossover region in
Fig. 9(a) and are majorly around the hippocampus and ventricles.

Slice direction In Table 5, we show the quantitative results of our
diagnosis network in three directions: axial, sagittal, and coronal. The
coronal planes performed the best, followed by the axial and sagittal
planes. Although the axial planes are the most commonly used in
clinical practice, coronal planes are more easily used to identify AD-
related regions. The radiologist also often assesses AD diagnosis based
on a reliable biomarker visual rating of medial temporal lobe atrophy
(MTA) (Mårtensson et al., 2020; Custodio et al., 2022; Wan et al., 2022;
Ma et al., 2022) on coronal planes. Fig. 10 presents the interpretable
results from different directions of one brain randomly selected from
the ADNI dataset. We discover similarities in the ROIs from slice to
slice due to the use of a shared 2D backbone and the proposed slice-
shift module. More Grad-CAM interpretable results are illustrated in
Supp. C.3.

2D backbone As described in Section 2.3, our slice-aware and slice-
shift modules are not dependent on any specific backbone network, and
the diagnosis experiments described above are all based on ResNet18.
Here, we also introduce these two modules into ResNet34, and the
results are shown in Table 6. The improvement in the backbones
contributes to the corresponding enhancement in performance. In ad-
dition, the result of ResNet18 also demonstrates that our method can
achieve satisfied diagnosis performance with a remarkably low number
of network parameters.
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3.4. Overall framework results

This subsection focuses on the effectiveness of joint learning and the
overall framework results against other state-of-the-art AD diagnosis
methods.

Effectiveness of joint learning For the cross-modal synthesis task,
whether training in a supervised or unsupervised way, Table 2 shows
an improvement in the quality of the synthesized images after joint
learning with the downstream diagnosis task. For the diagnosis task,
we trained four variants of our diagnosis network in Table 7. V1 is
a single-modality variant of our diagnosis network that solely takes
labeled MRI images as input; V2 is a modality-agnostic variant of our
diagnosis network that takes either labeled MRI or labeled PET images
as input; V3 adopts the supervised Pix2Pix synthesis network to achieve
joint learning, which takes both paired, labeled MRI and PET images;
V4 adopts our unsupervised synthesis network to achieve joint learning,
which takes labeled MRI images and unpaired, unlabeled PET images.
Note that all the variants only take MRI images as input in the inference
phase.

Based on the results in Table 7, we have the following observations.
(i) By directly comparing V1 to V2, we find that the classification
network trained to be agnostic to the modality performs worse than the
one trained with only MRI images. Although V2 has access to additional
labeled PET images, the performance drop may be explained by: (1)
real PET images are more complicated than real MRI images due to
large inter-individual functional variances, which is more challenging
in extracting diagnostic-related features; (2) the modality difference
between real PET and MRI images is large, which is challenging to
align these two real modalities in the feature space. (ii) By comparing
V3 to V1, we find that leveraging paired PET images to train a cross-
modal synthesis network can help improve the diagnosis performance.
Unlike V2, V3 can synthesize PET images whose information is derived
solely from input MRI without introducing additional information for
the diagnosis network compared to real PET images, facilitating the
diagnosis network in extracting AD-relevant features more effectively.
Moreover, the joint learning of cross-modal and diagnosis networks
allows for mutual supervision, leading to feature alignment across
different modalities and mining shared modality information more
easily. (iii) By comparing V4 to V3, we find that our unsupervised
synthesis network can better aid the diagnosis network than the super-
vised one when joint learning. One reason may be that the pixel-level
supervision in supervised training could force the synthesis model to
synthesize each pixel in PET images, which is challenging for the
diagnosis network to extract discriminative feature-level diagnostic in-
formation since many pixels are not discriminative. In contrast, our
unsupervised training can better focus on diagnosis-related features
through mining shared modality information.

Comparison to state-of-the-art methods We performed a compre-
hensive comparison of various classical classification methods, includ-
ing 2D ResNet18 (channel-wise), 3D ResNet18 (Korolev et al., 2017),
I3D (Carreira and Zisserman, 2017), and 3D ViT (Dosovitskiy et al.,

2020), as well as other state-of-the-art AD diagnosis methods. These
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Table 7
Effectiveness of joint learning for diagnosis on the ADNI testing set. The best quantitative results are highlighted in bold font.

Variants♯ Input modality Joint learning ACC AUC F1S SPE SEN

V1 Single-modality network Only MRI ✗ 0.867 0.924 0.864 0.873 0.865
V2 Modality-agnostic network MRI/PET ✗ 0.837 0.910 0.834 0.864 0.832
V3 Joint learning (Pix2Pix) Paired MRI + PET " 0.872 0.931 0.870 0.874 0.871
V4 Joint learning (Ours) Unpaired MRI + PET " 0.875 0.933 0.874 0.874 0.875

♯ All the methods adopt the proposed diagnosis network and are evaluated using MRI images from the testing set. Note that Pix2Pix is supervised cross-modal synthesis method,
while ours is unsupervised.
Table 8
Diagnosis results of the proposed framework for AD diagnosis with other state-of-the-art methods. The best and second best quantitative results are highlighted in bold and
underlined fonts.

Methods Param. Internal ADNI testing set External AIBL testing set External NACC testing set

ACC AUC F1S SPE SEN ACC AUC F1S SPE SEN ACC AUC F1S SPE SEN

2D ResNet18 11.97M 0.802 0.871 0.798 0.870 0.800 0.812 0.901 0.766 0.858 0.831 0.772 0.860 0.764 0.829 0.784
3D ResNet18 33.14M 0.835 0.897 0.829 0.882 0.826 0.835 0.908 0.787 0.857 0.843 0.812 0.909 0.808 0.863 0.817
I3D 12.25M 0.844 0.914 0.830 0.856 0.847 0.837 0.914 0.795 0.867 0.821 0.826 0.911 0.818 0.861 0.831
TripleMRNet 34.31M 0.841 0.911 0.833 0.880 0.827 0.855 0.919 0.809 0.889 0.832 0.837 0.915 0.817 0.854 0.840
MedicalNet 33.14M 0.848 0.915 0.841 0.878 0.836 0.853 0.923 0.799 0.888 0.847 0.831 0.915 0.827 0.851 0.841
FCNlinksCNN 16.30M 0.865 0.923 0.863 0.870 0.865 0.869 0.921 0.818 0.872 0.863 0.855 0.918 0.854 0.860 0.863
3D ViT 14.69M 0.811 0.873 0.799 0.889 0.794 0.829 0.868 0.757 0.869 0.774 0.750 0.826 0.748 0.767 0.748
3D ResAttNet18 35.25M 0.844 0.910 0.839 0.877 0.838 0.855 0.918 0.796 0.883 0.817 0.832 0.911 0.831 0.859 0.834
RES_late-dyn 11.17M 0.851 0.918 0.848 0.867 0.848 0.860 0.937 0.819 0.904 0.864 0.846 0.912 0.843 0.855 0.844
JSRL 28.70M 0.865 0.916 0.860 0.896 0.835 0.865 0.943 0.822 0.913 0.852 0.857 0.921 0.854 0.877 0.852
Our framework 11.24M 0.875 0.933 0.874 0.874 0.875 0.879 0.947 0.827 0.907 0.867 0.859 0.919 0.856 0.865 0.863
AD diagnosis methods included MedicalNet (Chen et al., 2019), FC-
NlinksCNN (Qiu et al., 2020), 3D ResAttNet18 (Zhang et al., 2021),
TripleMRNet (Bien et al., 2018), RES_late-dyn (Liang et al., 2021), and
the joint image synthesis and representation learning (JSRL) frame-
work (Liu et al., 2022). We assessed the performance of these methods
on both internal and external datasets, and the comparative outcomes
are presented in Table 8. Note that all the methods employ only MRI
as input except for JSRL, which utilizes paired MRI and PET data
as input. However, all the methods were tested using only MRI as
the input. 2D ResNet18 (channel-wise) is a standard 2D ResNet18
network treating slices as channels. 3D ResNet18, I3D, and 3D ViT
are the classical 3D classification networks that have also been used
in the literature for various disease diagnoses very recently. We finally
chose the relatively optimal parameters after extensive experiments in
3D ViT: patch size of 16 × 16 × 16, depth of 4, number of heads
equal to 8, hidden layer dimension of 512, and intermediate layer
dimension of 2048. MedicalNet employs 3D ResNet18 weights trained
on 23 different medical databases. The FCNlinksCNN network begins
by extracting high-confidence regions using a 3D CNN and finishes
the prediction with a fully connected layer. A self-attention module
is used at the end of each residual block in the 3D ResAttNet18 net-
work to extract more global features. Considering the spatio-temporal
complexity due to the large size of the input images, the self-attention
we implemented is based on the approach developed by Zamir et al.
(2022). TripleMRNet and RES_late-dyn are two recent well-performing
2D convolution-based algorithms for Alzheimer’s disease diagnosis. To
be fair, they are all built with ResNet18 as the backbone. The JSRL
uses the underlying shared features between MRI and PET for the joint
learning of cross-modal synthesis and AD diagnosis networks.

Our framework performs well in terms of diagnosis performance and
generalization ability across different external datasets. And we draw
three major conclusions from Table 8. First, slice-to-slice information is
critical in 2D or 3D convolution-based methods. Even the simplest 2D
ResNet18 (channel-wise) can achieve reasonable results. TripleMRNet
combined three slice-dividing directions, ResAttNet18 introduced slice
global information, the feature maps’ late fusion of RES_late-dyn, and our
network’s slice-shift module will all help us learn more information
between slices. Second, many 2D convolution-based algorithms out-
perform many 3D convolutional methods. 3D networks are prone to
overfitting due to significant parameters, and the performance tested
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in the external dataset drops quickly unless the network is pre-trained
with many datasets to maintain good generalization. Due to the lack
of local induction bias like CNN (Naseer et al., 2021), 3D ViT has poor
experimental results with limited data. Third, the joint learning frame-
work can help cross-modal synthesis and diagnosis networks supervise
each other, improving the performance of both tasks. The results of
JSRL and our joint learning method both validate the effectiveness
of joint learning. Unlike JSRL, our framework does not involve the
cross-modal synthesis network during the inference phase, which is
memory-friendly and computationally efficient. Supp. C.4 also shows
the visualization of data using 𝑡-distributed stochastic neighbor em-
bedding (𝑡-SNE) (Van der Maaten and Hinton, 2008), which validates
the network’s generalization ability again, and it can be seen that our
network generalizes well on external datasets.

4. Discussion

This section discusses the related works and the proposed frame-
work’s advantages and limitations.

Discussion on the related work Related works on leveraging PET to
improve AD diagnosis from MRI (Li et al., 2014; Campos et al., 2015;
Pan et al., 2020, 2021; Liu et al., 2022) usually contain two steps: the
first is to synthesize the missing PET modality images, and the second is
to use both synthesized PET and original MRI for so-called multi-modal
diagnosis. However, during the entire workflow, the information for
the synthesized PET images is all derived from the input MRI images,
so no additional information is introduced for AD diagnosis; that is,
the so-called AD multi-modal diagnosis is essentially single-modal. For
example, Pan et al. (2021) propose a feature-consistency generative
adversarial network (FGAN) using two synthesis models and four aux-
iliary components to implement the inter-conversion between MRI and
PET, and then develops a disease-image-specific network (DSNet) based
on 3D convolution to extract different modalities’ features individually
and integrate them together for AD diagnosis. Although (Liu et al.,
2022) use the underlying shared features of MRI and PET for the joint
learning of cross-modal synthesis and diagnosis networks, the quality
of synthesized PET images is not being considered, and the cross-
modal synthesis network still needs to be deployed during the diagnosis
inference phase. Unlike existing methods that take the synthesized
PET images as an independent modality, our framework considers the

synthesized PET images to be task-specific data augmentation of the
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input MRI images and feeds either synthesized PET or real MRI into
the same diagnosis network to mine the underlying shared information
between them. Please refer to Supp. D for detailed comparison.

Furthermore, our framework differs from existing methods in terms
of practical application, training process, and task type, which are
summarized as follows. (i) Regarding the practical application, the
diagnosis network in existing workflows requires the simultaneous
input of synthetic PET and real MRI to complete the diagnosis. It
indicates that during deployment, they must first synthesize PET images
before decision-making. In contrast, once the training of the proposed
joint learning framework is completed, our framework does not require
the synthesized PET images. (ii) Regarding the training process, the
existing works train the synthesis and diagnosis networks separately. In
ontrast, we employ joint learning in our framework, where these two
etworks mutually supervise each other, resulting in high-quality image
ynthesis and better diagnostic performance. (iii) Regarding the task

type, most existing workflows are designed for supervised cross-modal
synthesis tasks. However, our model focuses more on unsupervised
cross-modal synthesis, indicating that our framework is more practical.

In addition, existing works typically demand vast computational
resources and have complicated training procedures. Unlike them, we
have tried to simplify our framework, such as using only one synthesis
model in the cross-modal synthesis network and proposing an efficient
2D network for the 3D diagnosis tasks.

Discussion on the advantages We highlight the advantages of the
proposed framework as follows. (1) More applicability. Because collect-
ng large-scale paired data for training is time-consuming and cum-
ersome in practical scenarios, suffering from potential overfitting.
he proposed framework focuses on cross-modality synthesis using
assive unpaired unlabeled data, which is more practical than the

upervised one. In addition, our diagnosis network is interpretable. It
an locate key slices and critical slice regions that are consistent with
hose associated with AD. (2) More discriminative diagnosis information
n the synthesized missing modality images. Regardless of training in a
upervised or unsupervised way, the synthesized images are challeng-
ng to be applied to task-specific diagnosis. The proposed joint learning
ramework of cross-modal synthesis and diagnosis tasks can connect
hem together, provide more discriminative diagnosis information in
he synthesized images, and improve AD diagnosis performance. In ad-
ition, we propose a novel unsupervised cross-modal synthesis network
hat implements the inter-conversion between 3D PET and MRI in a
ingle model modulated by the AdaIN module, which can help preserve
he underlying structure well and achieve better image quality. (3)
fficient and easy to be deployed. The proposed AD diagnosis network is
mplemented based on fully 2D convolution, joint inter- and intra-slice
odeling, and zero-params slice-shift modules, which is much more

fficient than the conventional 3D one. Moreover, only the diagnosis
etwork needs to be deployed during the diagnosis inference phase.
n addition, we can still parallelly synthesize the corresponding PET
mages to aid radiologists in their diagnoses.

iscussion on the limitations Here, we acknowledge some limita-
ions in this work. (1) Costly and complicated training. The proposed

framework requires more computational resources in terms of floating
point operations and memory usage compared to 2D synthesis tasks,
and has complicated training procedures similar to existing works.
However, our framework is efficient once trained during the inference
phase. How to train our joint learning framework with fewer computa-
tional resources in one step needs to be further optimized. (2) Potentially
biased diagnosis for other disease. Because our joint learning framework
is mainly concentrated on AD, which is a task-specific framework, we
cknowledge that the synthesis process guided by the downstream
iagnosis network may introduce specific diagnostic information, po-
entially biasing the computer-aided diagnosis for other diseases. (3)
ubjects in other stages of AD progression are not considered. In the setting
f unsupervised training, it is more challenging to distinguish Mild
ognitive Impairment (MCI) from NC and AD subjects. How to leverage
ore information from subjects in other stages of AD development
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eeds to be considered.
5. Conclusion

This paper proposes a novel joint learning framework of cross-
modal synthesis and diagnosis for AD by mining underlying shared
modality information. Our joint learning framework has the following
advantages: (1) more applicability; (2) more discriminative diagno-
sis information in the synthesized missing modality images; and (3)
efficient and easy to be deployed. Moreover, our joint learning frame-
work outperforms other state-of-the-art methods regarding synthesized
image quality, diagnosis capacity, and generalization ability across
external datasets. In the future, we will integrate other downstream
tasks (segmentation, registration, etc.) in our framework to synthe-
size more realistic images and achieve better performance, and also
apply our framework to other brain diseases, such as Parkinson’s dis-
ease, depression, and autistic disorder, for efficient and interpretable
diagnosis.
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